Cis-trans Isomerization of Dithiosulphatobisethylenediaminecobalt(III) in Aquatic Solution

B. CHAKRAVARTY*, P. K. DAS and A. K. SIL

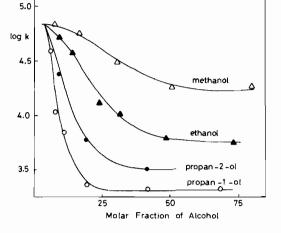
Department of Chemistry, University of Kalyani, Kalyani 741235, India

Isomerization of the cationic complex of the type $\operatorname{Coen}_2 X_2^+$ (X⁻ = singly charged anionic ligand) in basic solution proceeds through ion-pair formation [1]. The study of isomerization of the present anionic complex was undertaken as with this complex, ion-pair formation is untenable and isomerization may follow a different mechanistic path.

The isomeric forms of the complex were prepared according to literature [2]. Isomerization of the *cis* complex takes place below pH ~ 6.5. Above pH ~ 6.5 *trans* \rightarrow *cis* conversion takes place, increasing with pH of the medium. Dependence of isomerization on pH indicates a definite role of the hydroxyl ion, which acts as a catalyst only. In basic medium, 'en' transforms to 'amido' form at one end. The combined effect of *trans* labilization of this 'amido' end, spanning of one of the $S_2O_3^2$ ($S_2O_3^2$ may act as a bidentate group also) to adjacent *cis* position and nucleophilicity and ring closing tendency of the partially released end of 'en' gives the required *trans* \rightarrow *cis* conversion.

Nearly equal entropies of isomerization of both the forms and equilibrium of $cis \Rightarrow trans$ conversion at pH ~ 6.5 indicates a common intermediate for the conversion of both the forms.

References


- V. F. Seel, D. Meyer, Z. Anorg. Chem., 408, 283 (1974);
 A. W. Chester, Inorg. Chem., 8, 1584 (1969); 9, 1746 (1970);
 M. E. Farago et al., Inorg. Chem., 8, 2270 (1969).
- 2 P. Ray and S. N. Moulik, J. Indian Chem. Soc., 10, 655 (1933).

Solvent Effect on Electron Transfer Reactions

EZIO PELIZZETTI and EDMONDO PRAMAURO

Istituto di Chimica Analitica, Università di Torino, Turin, Italy

Although electron transfer reactions have been extensively investigated [1], the influence of changes

of solvent has received comparatively little attention [2].

The effect of water-alcohol mixtures (methanol, ethanol, propan-1-ol, propan-2-ol) on the electron transfer rates of the following systems is reported in the present communication

$$Co(phen)_{3}^{3^{+}} + Fe(cp)_{2} \xrightarrow[k_{-1}]{k_{-1}} Co(phen)_{3}^{2^{+}} + Fe(cp)_{2}^{+}$$
(1)

$$\operatorname{Fe}^{3^{+}} + \operatorname{Fe}(\operatorname{cp})_{2} \to \operatorname{Fe}^{2^{+}} + \operatorname{Fe}(\operatorname{cp})_{2}^{+}$$
(2)

$$Fe^{3^{+}} + PTZ \rightarrow Fe^{2^{+}} + PTZ^{^{+}}$$
(3)

where $Co(phen)_{3}^{3+}$ represents tris(1,10-phenanthroline)cobalt(III), $Fe(cp)_2$ ferrocene, and PTZ and PTZ^{*+} phenothiazine and the corresponding cation radical, respectively. The reaction rates were followed by means of a stopped-flow spectrophotometric technique.

The dependence of the logarithm of the rate constants as a function of the molar fraction of alcohol is reported in Fig. 1, for the system (1). The variation of the rate constants is not related to macroscopic solvent parameters [3, 4].

References

- 1 R. G. Wilkins, 'The Study of Kinetics and Mechanisms of Reactions of Transition Metal Complexes', Allyn and Bacon, Boston (1974).
- 2 O. I. Micic and B. Cercek, J. Phys. Chem., 78, 285 (1974);
 K. Ohashi, T. Amano and K. Yamamoto, Inorg. Chem., 16, 3364 (1977).
- 3 E. Pelizzetti and R. Giordano, J. Inorg. Nucl. Chem., in press.
- 4 E. Pelizzetti and E. Pramauro, unpublished results.